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For the approximate representation of large data sets over a parameter domain
in R2, many geological and other applications require the construction of surfaces
which have minimal energy, i.e., minimal curvature. One way to achieve this is
by solving a fourth-order elliptic partial differential equation. Its discretization by
a difference scheme makes it particularly easy to incorporate (appropriate approx-
imations of) known data points. In this paper, we investigate the performance of
different solution methods for the resulting symmetric linear system of equations
since this is the most CPU-demanding step in the scattered data approximation pro-
cedure. Specifically, we test first the performance of a preconditioned conjugate
gradient method with an SSOR and an RILU preconditioner. However, since the
partial differential operator does not contain mixed derivatives, using an alternating-
direction-implicit scheme (ADI method) which has been employed successfully in
the past for second-order problems, together with a Cholesky factorization of the cor-
responding one-dimensional operators has also been tried for the problem at hand.
The computational studies that we have performed here show that for our prob-
lem an instationary ADI method is superior to the above-mentioned preconditioned
conjugate gradient solvers both with respect to work load and accuracy of the solu-
tion. For the fourth-order model problem considered in this paper, the instationary
ADI method with Wachspress parameters results in a number of iterations that is
essentially independent of the number of variables.c© 1998 Academic Press
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1. INTRODUCTION

To represent surfaces approximating scattered data, many users prefergrid functions.
These are discrete functions defined on a grid overlappingÄ ⊂ R2 in the parameter domain
with equally spaced nodes in each coordinate direction called aregular grid. By using spline
interpolation methods as described, e.g. in [2], from the grid functions one can easily obtain
continuous functions onR2 for visualization and other purposes.

To generate a grid function on a given regular grid that approximates a large set of
scattered data, a method consisting of three steps has been developed in [3]. In the first
and second stages calledregularizationandapproximation, the grid function is assigned
function values at nodes lying in regions with high data density by a local approximation
scheme. The last step, denoted byextrapolation, determines the remaining function values
of the grid function in a global fashion by minimizing its “curvature” (in a sense yet to be
made precise).

This method does not interpolate the given scattered data set. Its main area of application
is rather in situations where there are large point sets that should be approximated and the
data should not be interpolated. Such data occurs in many applications, and the three-step
procedure for scattered data approximation described above is used in several commercial
products through the SINTEF Scattered Data Library (SISCAT) [5, 18]. One example of an
application area for this method is the construction of a geological surface over a bivariate
regular grid, where the data is given on contours or seismic tracks.

Due to the typically large amount of resulting data, methods like using radial basis
functions (e.g., thin plate splines [16]) cannot be employed any more for the construction
of a grid function having minimal energy. The extrapolation process given in [3] yields
to the problem of solving a fourth-order symmetric elliptic partial differential equation.
This equation is discretized using a difference method which makes it particularly easy
to incorporate the scattered data conditions, leading to a large system of linear equations.
Since the system matrixP is symmetric, positive definite, and sparse, a natural choice to
solve the linear equations is to use aconjugate gradient method(CG method). Unfortunately,
the convergence speed of this iterative method is disturbingly low due to its dependence
on the spectral condition number ofP which in the present case is of orderO(h−4), whereh is
the grid spacing. Therefore, preconditioning with the aim of reducing the condition number
becomes an essential task, thus resulting in thepreconditioned conjugate gradient method
(PCG method). Here we have used two standard preconditioners in the PCG method which
both reduce the condition number toO(h−2). The first one is anSSOR preconditionerwhich
is based on an additive decomposition ofP. The second choice is theRILU preconditioner
derived from an incomplete factorization ofP into triangular matrices (see, e.g., [8 or 12].

However, it turns out in the computational studies that an instationaryalternating-
direction-implicit method(ADI method) is superior to the above-mentioned PCG methods
for the present problem with respect to the overall amount of work and the reduced error.
In fact, the number of iterations for the ADI method grows very slowly as a function of the
number of variables which is not at all the case for the PCG schemes. In the ADI approach
the matrixP is decomposed additively into its parts from the difference operators in each
coordinate direction in the parameter domain. The iteration is based on alternatingly solving
the corresponding linear systems based on one-dimensional fourth-order problemsexactly
(after reordering of nodes) by computing the inverses of thesepentadiagonalmatrices di-
rectly by means of Cholesky decomposition. A description of all these methods, although
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only for second-order problems, together with convergence proofs can be found, e.g., in
[12].

The ADI method as described here has also been applied to linear systems arising from
scattered data problems with discontinuities as developed in [4]. In this paper, we will
focus on a model problem capturing the main difficulties of the extrapolation problem
of the scattered data approximation method, and we will not consider the discontinuities
here. First tests [20] indicate that the method still works well, even though one of the main
theoretical requirements, the commutativity condition (21) below of the difference operators
in each coordinate direction is violated.

This paper is structured as follows. In the next section, we briefly recall the regularization
and approximation steps of the scattered data procedure from [3] and give a short review of
the extrapolation step. Based on some observations regarding the main difficulties in solving
the linear equations connected to the extrapolation step, we formulate a model problem in
Section 3. In Section 4, we briefly discuss the preconditioned conjugate gradient method as
well as give a description of the stationary and instationary ADI methods and apply them
to the fourth-order problem at hand. In Section 5 we experiment numerically with these
solvers on the model problem in Section 3. Section 6 gives some concluding remarks.

2. REVIEW OF THE SCATTERED DATA METHOD

Following the ideas for the construction of grid functions in [3], let{(sk, yk) ∈ R2× R,k in
some finite index setK } be a given set of scattered data. Let furtherG := Ä ∩ (h1Z× h2Z)
be a grid with grid spacingh1, h2 > 0, whereÄ is some bounded rectangular domain in
R2. We assume thatÄ contains the scattered pointsS := {sk, k ∈ K }.

In the regularizationstep, a subsetD ⊂ G is determined by requiring that in a region
around eachα ∈ D there are sufficiently many data points. The precise construction is that
a density function describing the scattered data density at each point inÄ is determined.
Then the nodes inD are those inG where the density exceeds a certain threshold value.
For a discussion of the regularization step, see [14].

In theapproximationstep, a data set{(α, zα) ∈ R2× R, α ∈ D} is computed by the appli-
cation of some local approximation scheme. Choosing for eachα ∈ D a local approximation
operator depending on a relatively small subset of{(sk, yk), k ∈ K } in the neighborhood
of α then yields values for the grid function onD. For this purpose, one may, e.g., employ
Shepard’s method [17] or a polynomial least squares approach, or use radial basis functions
like thin plate splines [16].

In theextrapolationstep, the values onU = G\D are computed by employing a global
scheme for minimizing a measure of the curvature of the surface under the restriction of
interpolating the values onD. The various point sets are shown in Fig. 1.

Minimizing the curvature of a continuous functionu over a bivariate domainÄ at each
point ofu in every direction leads to considering the problem

min
u∈C2(Ä)

I (u)

at r = 0, where

I (u) =
∫
Ä

∫ π

0
w(φ)

(
∂2

∂r 2
u(x + r cosφ, y+ r sinφ)

)2

dφ dx dy. (1)
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FIG. 1. This figure explains the notation used to define the different sets of points. The entire grid is denoted
by G, the scattered data points, marked by “+” are denoted byS, the grid points located close to the data points
are denoted byD and are marked by “h,” and finally the set of grid points not close enough to any data point are
unmarked and denoted byU = G\D.

Herew(φ), 0 ≤ φ < π , is some weight distribution. We note that withw ≡ 1 the Euler
equation for (1) is essentially the same as the Euler equation for the thin plate spline
functional [10],

I (u) =
∫
Ä

((uxx)
2+ 2(uxy)

2+ (uyy)
2) dx dy, (2)

where we abbreviatefx := ∂ f/∂x, fy := ∂ f/∂y for any sufficiently smooth function
f = f (x, y). Thus, (1) can be viewed as a generalization of (2).

For our purpose we choose

w(φ) = δ0(φ)+ δπ/2(φ),

whereδx is the delta distribution. Thus, the functional becomes

I (u) =
∫
Ä

((uxx)
2+ (uyy)

2) dx dy (3)

which means that the curvature is minimized along thex- and y-axes of the parameter
domain. This functional is very well suited for the modeling of faulted geological surfaces
[4] and, as will see later on, leads to a system of linear algebraic equations which are
amenable to being solved by an ADI method. For more general weightsw see [13].
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The minimization ofI (u) as defined in (3) leads to the Euler equations∫
Ä

(uxxvxx + uyyvyy) dx dy= 0 (4)

for any bounded test functionv ∈ C2(Ä). One approach to solve (4) would be to employ
finite elements in such a Galerkin-type formulation. We will, however, continue to work in
the grid setting and compute the values onU directly through a finite difference approach
since this makes it easy to incorporate the known values onD.

Assuming now sufficiently high smoothness ofu, we can integrate Eq. (4) by parts to
obtain ∫

Ä

(uxxxx+ uyyyy)v dx dy= 0. (5)

Here, we assume either thatu satisfies the natural boundary conditions (i.e., second- and
third-order normal derivatives vanish) or that the test function is restricted to some appro-
priate subspace ofC2(Ä). Of course, without posing any further conditions onu, any cubic
polynomial satisfies (5).

Since our goal is to interpolate the data given onD ⊂ G ⊂ Ä, this leads to the requirement
for solving

uxxxx+ uyyyy= 0 inÄ\D,
u(α) = zα, α ∈ D,

(6)

and in addition some natural boundary conditions, if necessary, to guarantee uniqueness of
u.

To discretize (6), we will approximate the derivatives by finite differences on the grid
G = Ä ∩ (h1Z× h2Z). The discretized differential operator should only be applied to the
nodes ofU = G\D as the interpolation conditions are to be fulfilled onD. This leads to
the N = #U equations

1

h4
1

(Hz)α + 1

h4
2

(V z)α = 0, α ∈ U, (7)

where the horizontal and vertical difference operatorsH andV are defined by

(Hz)α = zα−2d1 − 4zα−d1 + 6zα − 4zα+d1 + zα+2d1

and

(V z)α = zα−2d2 − 4zα−d2 + 6zα − 4zα+d2 + zα+2d2

with direction vectorsd1 = (1, 0)T andd2 = (0, 1)T .
We will in the following assume thath1 = h2, in which case we might replace (7) by

(Hz)α + (V z)α = 0. This leads to the definition of the difference operator,

(Pz)α = (Hz)α + (V z)α; (8)



           

348 ARGE AND KUNOTH

i.e., P can be identified with a 9-point-difference stencil of the form
1

−4

1 −4 12 −4 1

−4

1

 . (9)

SinceG is a finite grid, the stencil has to be modified close to the boundary ofÄ. For
example, ifα ∈ U andα + 2d1 /∈ G, the horizontal operatorH could be modified to

(Hz)α = zα−2d1 − 4zα−d1 + 5zα − 2zα+d1,

and if alsoα + d1 /∈ G, it would read

(Hz)α = zα−2d1 − 2zα−d1 + zα.

These alterations correspond to a discretization of the natural boundary conditions
uxxx = uxx = 0 across a vertical boundary. Similar conditions can be posed onV . For
further details on such discretizations see [1, p. 137].

Given the above discretization of boundary conditions, together with mild restrictions
on the number and location of the nodes inD, it is shown in [4] that the operatorP is
symmetric and positive definite on the space of grid functions supported inU ; i.e., for any
grid functionsu andv such thatuα = vα = 0 for all α /∈ U we have

(Pu, v) = (u, Pv),

(Pu, u) > 0, u 6= 0,

where (·, ·) denotes the Euclidean inner product. The conditions for positive definiteness are
that there exist at least four nodes inD that are not zeroes of any bilinear function which is a
very weak condition. In fact, the results in [4] also cover the introduction of discontinuities
in the grid function (faults) treated as internal boundary conditions toward the faults. Thus,
corresponding discretizations always yield a system which is uniquely solvable.

SinceP is symmetric, positive definite, and sparse, a natural approach for solving the
linear equations (7) is to use some kind of iterative method like the conjugate gradient
iteration. Without preconditioning, this can be implemented simply by storingz in a matrix
and applying the stencil (9) toz in order to perform the matrix–vector product, i.e., it is not
necessary to assemble the matrix. This is done in [3], where it is indeed observed in the
computations that the number of conjugate gradient iterations grows very fast as a function
of the size of the grid as predicted by the theory. In fact, for a sparse data setD and a fine
grid G, the spectral condition number ofP is O(N2), whereN = #U . The convergence
rate of the CG method is then close to zero (cf. (13)), which means that there is hardly any
improvement in each iteration step whenN is large. WhileN is smaller and thus also the
condition number ofP when more dataD is given, the convergence rate also depends on
the distribution of the data which is reflected in the constants inO(N2). In view of this
observation, the model problem given in the next section is chosen such that all the given
data is assembled around the boundary. Thus, the example is rather “ill-conditioned” in the
sense that the constants inO(N2) will be quite large.
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3. A MODEL PROBLEM

Given an integern ≥ 2, leth = 1/(n− 1). In the model problem we will use a domain
Ä of the formÄ = [−2h, 1+ 2h]2 and we defineG = Ä ∪ hZ2. Furthermore, let

D = {α ∈ G : α /∈ [0, 1]2},

and defineU = G\D. ThenU consists ofN = n× n nodes on a uniform grid covering the
unit square. The data nodesD lie on two more outer grid lines parallel to the boundaries of the
unit square. The input data will be sampled from a test function onD; thus we do not consider
the regularization and approximation steps of the scattered data approximation algorithm.
Neither do we consider derivative-type boundary conditions. The boundary conditions will
be of Dirichlet type, clamping the value and the cross boundary derivative of the solution
at the boundary.

With this setup we are able to study the effect of approximating scattered data sets
containing regions with little data. Large values ofn are to be interpreted as large “holes”
in a scattered data set.

Let f be some test function and define

zα = f (α) for all α ∈ D. (10)

To computezα for α ∈ U we must solve the linear system

(Pz)α = (Hz)α + (V z)α = 0, α ∈ U. (11)

In order to apply the equation solvers in the next section, we will need to formulate (11) by
assembling the coefficient matrix. For this purpose letbα = −(Pz̄)α, wherez̄α = f (α) if
α ∈ D andz̄α = 0 otherwise. Then a grid functionz with zα = 0 for all α ∈ D solves our
problem if

(Pz)α = (Hz)α + (V z)α = bα, α ∈ U.

Enumerating the grid nodesvertically, beginning with the lower left corner ofU , one obtains
a linear system of equations

Pz= (H + V)z= b, (12)

where we keep the notationP, H , andV for the correspondingN× N matrices. With the
vertical orderingV has a dense band of band width 5. That is,V has two side diagonals
on each side of the main diagonal. It is also block diagonal with blocks of sizen× n, each
block corresponding to the one variable problem induced by a vertical grid line. The matrix
H has band width 5(n− 1). However, using ahorizontalordering the situation forH and
V is reversed.

For the PCG methods used in the next section, the ordering is not of primary importance
since we will only need to perform matrix–vector products, and hence, we can storeP
in a matrix format supporting sparse matrices. However, for the ADI method we will use
Cholesky factorizations of matrices related toH andV , and with the vertical ordering this
would create fill-in inH . To avoid this we will use a vertical ordering forV and a horizontal
ordering forH in the implementation of the ADI method.
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4. SOLVING THE SYSTEM OF LINEAR EQUATIONS

4.1. Preconditioned Conjugate Gradient Methods

The convergence speedR of the CG method (Algorithm 4.1 below withC = I , the
identity matrix) depends on the spectral condition number

κ(P) := λmax(P)

λmin(P)
= O(h−4), (13)

whereλmax(P) andλmin(P) are the maximal and minimal eigenvalues ofP, in such a way
that it slows down exponentially with decreasing grid spacing, i.e.,

R= − log

∣∣∣∣√κ(P)− 1√
κ(P)+ 1

∣∣∣∣ . (14)

An example of this dramatic effect for the present situation is given in [3]. The fourth power
of h in (13) relates to the fact that the differential operator in (8) is of order four.

It is therefore of primary importance to precondition the linear system, i.e., to replace
(12) by

CPz= Cb,

whereC is some symmetric positive definite matrix approximatingP−1. One would callC
a “good” preconditioner forP if κ(C P) ¿ κ(P) and if the matrix–vector productC P is
not too costly, typically of the same computational complexityO(N) as for performingPz.

Below we provide an outline of the preconditioned conjugate gradient method as it can
be found in, e.g. [12].

Algorithm 4.1. PCG method.

r ← b− Pz, z start vector

g← Cr
p← g
σ ← (r, g)
residual error←√(r, r )
while (residual error > error wanted) {

α← σ

(p, Pp)
z← z+ αp
r ← r − αPp
g← Cr
σnew← (r, g)

β ← σnew

σ
σ ← σnew

p← g+ βp
residual error←√(r, r )
}

Here (·, ·) denotes as before the Euclidean inner product.
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In the examples in Section 5 we have setC to be the SSOR preconditioner, derived
from the classical successive overrelaxation iteration for symmetric matrices, and the RILU
preconditioner, based on incomplete factorization. For fourth-order problems, one expects
thenκ(C P)=O(h−2). For more information on these and other types of preconditioners,
see [8 or 12].

4.2. ADI Methods

An alternative approach to solve (12) which is somewhat different from the PCG method
with SSOR or RILU preconditioner is motivated by the fact that the stencil (9) does not
contain mixed derivatives. The idea is to define an iteration based on the splittingP =
H +V , leading to the ADI method. The theory for the ADI method in this subsection, as it
was developed for second-order problems, has been taken from the survey [6], where also
all the proofs of the statements and a number of examples and computations (although from
more than 30 years ago) can be found.

Introducing an iteration parameterρ > 0, we may write Eq. (12) as

Pz= (H + ρ I + V − ρ I )z= b

which gives the relations

z = (V + ρ I )−1(b− (H − ρ I )z),

z = (H + ρ I )−1(b− (V − ρ I )z).

Usually the matricesH and V are assumed to be symmetric and positive semi-definite.
For the model problem in Section 3 they are actually positive definite. Therefore, for any
ρ > 0, V + ρ I andH + ρ I are positive definite and, consequently, their inverses are well
defined.

Adopting the notionstationaryADI method from [12, p. 197], the procedure with a single
iteration parameterρ reads as follows.

Algorithm 4.2 (Stationary ADI method).

z start vector, ρ iteration parameter

r ← b− Pz
residual error←√(r, r )
while (residual error > error wanted) {

z← (V + ρ I )−1(b− (H − ρ I )z)
z← (H + ρ I )−1(b− (V − ρ I )z)
r ← b− Pz
residual error←√(r, r )
}

By ordering the grid points vertically when assemblingV and horizontally when assem-
bling H as mentioned before, both matrices will be pentadiagonal; i.e., they have the four
side diagonals directly adjacent to the main diagonal (band-width 5). The same ordering
principles are used forH + ρ I andV + ρ I . The inverses ofH + ρ I andV + ρ I are de-
termined by Cholesky decomposition ahead of the iteration loop. Since these are 5-banded,
the decompositions are performed quickly without fill-ins.
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The application of the inverses inside the iteration loop are performed by forward–
backward substitutions. Again by the 5-banded structure, these actions areO(N)operations.
By using a vertical ordering of theN-vector, we must, however, reorder the vectors into a
horizontal ordering before an operation involvingH is performed.

It can be shown that Algorithm 4.2 converges for any fixed iteration parameterρ > 0
[6]. In fact, every stationary iterative methodx ← T x + b converges if and only if the
spectral radius3(T) := max̀ |λ`(T)| of theerror reduction matrix Tsatisfies3(T) < 1,
whereλ`(T) are the eigenvalues ofT (see, e.g., [11]). In Algorithm 4.2, one hasT =
(V +ρ I )−1(H −ρ I )(H +ρ I )−1(V −ρ I ) for which it can be shown with arguments from
linear algebra that its spectral radius is less than one for any positiveρ sinceH , V , andρ I
are real symmetric positive definite matrices [6, p. 195].

According to [6], the optimal choice ofρ depends on the smallest and biggest eigenvalues
of H andV . In our implementation we computed these eigenvalues using power iterations
(cf. [11]). It turned out that the eigenvalues could be found with very few iterations; in the
example in Section 5 three power iterations proved to be sufficient to determine satisfactory
approximations to the maximum and minimum eigenvalues.

Now, denote byaH , bH andaV , bV the minimal and maximal eigenvalues ofH andV ,
respectively. Define

F1 :=
(

bH −
√

aH bH

bH +
√

aH bH

)(
bV −

√
aH bH

bV +
√

aH bH

)
,

F2 :=
(√

aVbV − aH√
aVbV + aH

)(
bV −

√
aVbV

bV +
√

aVbV

)
.

If F1 ≤ F2 then the optimal choice for the iteration parameter is

ρ :=
√

aH bH ; (15)

otherwise, one should set

ρ :=
√

aVbV . (16)

With suchρ, the convergence rate of the stationary ADI method, Algorithm 4.2, is then at
least

R= − log F, F := min{F1, F2}.

For the situation at hand of one-dimensional fourth-order differential operatorsH andV ,
we typically have

aV ∼ aH ∼ h4, bV ∼ bH ∼ 1. (17)

HereX ∼ Y means that there exist constantsc1, c2 independent of any parametersX or Y
may depend on such thatc1Y ≤ X ≤ c2Y, andh is the grid spacing as in (13). Thus,ρ ∼ h2

with either of the two choices (15) or (16), and the convergence rate of the stationary ADI
method is then at least

R= − log

(
c1− h2c2

c1+ h2c2

)(
c3− h2c4

c3+ h2c4

)
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with some constantsc1, c2, c3, c4. Thus, ifh ∼ 2− j and j large, the speed of convergence
will be comparably slow. Tests for second-order problems performed in [6] show that
the stationary ADI method behaves essentially like the classical successive overrelaxation
method.

However, the rate of convergence of ADI methods can be considerably improved by using
a possibly different iteration parameter in each iteration step (see [6 or 1, pp. 206–212]).
Following again [12], we call the resulting procedure aninstationaryADI method. The
algorithm for determining these parameters denoted now byρi , i = 1, . . . ,m, for some
fixedm ∈ N can be formulated as follows and has to be done only once.

Algorithm 4.3 (Determination of iteration parameters).

1. Let a :=min{aH ,aV } and b :=max{bH , bV } where aH , aV , bH , bV are the

minimal and maximal eigenvalues of H and V, respectively, and set

c= a
b
.

2. Find the smallest integer m such that

(
√

2− 1)2m ≤ c. (18)

3. Determine ρi, i = 1, . . . ,m, as

ρi = b
(

a
b

)(2i−1)/2m

, i = 1, . . . ,m, (19)

or

ρi = b
(

a
b

)(i−1)/(m−1)

, m≥ 2, i = 1, . . . ,m. (20)

The parameters determined in (19) are calledPeaceman–Rachford parameters, while the
ones in (20) are commonly referred to asWachspress parameters. These parameters are
now used successively in a cyclic order in the following procedure.

Algorithm 4.4 (Instationary ADI method).

i = 1
z start vector, ρi iteration parameter
r ← b− Pz
residual error←√(r, r)
while (residual error > error wanted) {

z← (V + ρi I )−1(b− (H − ρi I )z)
z← (H + ρi I )−1(b− (V − ρi I )z)
r ← b− Pz
residual error←√(r, r)
i ← i + 1
if (i = m+ 1) {

i = 1
} }
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Remark 4.5. The instationary ADI method in Algorithm4.4converges provided that H,
V are positive definite and that they commute, i.e.,

HV = V H; (21)

see[6]. For the model problem from Section3,where the given data is assembled around the
boundary, this is, indeed, the case for the corresponding H and V. When data is given inside
the domain to approximate, e.g. discontinuities across faults, the respective operators H and
V do not satisfy the commutativity condition any more. However, in the first corresponding
tests[20] the instationary ADI method still worked well and converged fast. This could be
an indication that this method may still be used practically, as long as the amount of data
in the interior does not force HV−V H to deviate from the zero matrix in too many places.
A corresponding theoretical and computational study will be reported elsewhere.

In Algorithm 4.4, the inverses(V + ρi I )−1, (H + ρi I )−1 are determined exactly by
Cholesky decomposition ofV + ρi I and H + ρi I and can be computed ahead of the
iteration for each of the iteration parameters. However, for large systems this might be
too costly with respect to storage. In this case the alternative would be to recompute these
factorizations at each iteration step. As is seen from the examples, the number of iterations
turns out to be not much larger thanm; hence, this could be a good alternative for large
problems. In the examples below we did precompute the factorizations.

The Wachspress parameters seem to be superior to the Peaceman–Rachford parameters
in many cases [1, p. 209], and this holds true also for the present problem (cf. Section 5).
The rate of convergence in this case is average for fixedm:

R= − 2

m
log

(
1− 2(m−1)√c
1+ 2(m−1)

√
c

)2

.

Recalling (17) givesc∼ h4 for the fourth-order problem we are concerned with, so that
m ≥ 3 yields already an improved rate of convergence, compared to the stationary ADI
method. In view of (18) which roughly corresponds to 2−2m ≤ h4 in this case, a grid spacing
h ∼ 2− j yieldsm ≥ 2 j so thatm becomes bigger, the finer the mesh size is. For largem,
one has2(m−1)√c' √2− 1, so that

R' − 2

m
log(3− 2

√
2) ' 3.5

m
.

This means that the convergence rate, on average, decreases whenm grows. However, as
is confirmed by Table 3, when the number of grid points in each coordinate direction is
doubled,m is only increased by one and, accordingly, the number of iterations grows very
slowly.

Remark 4.6. In recent years, there have been more investigations on the construction
of optimal ADI-parameters for very general(but usually second-order) problems including
nonsymmetric differential operators; see, e.g.[19].

5. COMPUTATIONAL RESULTS

These experiments are performed in the framework of the model problem discussed in
Section 3. Initially, we considered several test functionsf in (10) sampled onD. The
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corresponding iteration counts were comparable for all the runs so that the interpolation
values onD for the runs corresponding to the tables below are sampled from the quadratic
polynomial

f (x, y) = 3x2+ 4y2+ 9xy+ 6x + 8y

only. Since f then satisfies the corresponding partial differential equation (6) exactly, we
are able to compare the numerical solutions to the analytic solution of the problem.

Define the discreteL2 norm by

‖u‖h =
(

h2
∑
α∈U

u2
α

)1/2

.

For all the runs the iterations are stopped when thekth residualr k = b− Pzk satisfies

‖r k‖h ≤ 10−3.

The number of iterations for a given run is denoted byk∗. We choosez0 = 0 as the start
vector for the iterations for all runs.

Before the iteration loop starts for the ADI methods, the maximal and minimal eigenvalues
of H and V are determined by using three power iterations. In addition, the Cholesky
factorizations forH +ρi I andV+ρi I are precomputed for each iteration parameter. Since
the work for one iteration of the PCG method and one iteration of the ADI method is not
directly comparable, we have estimated the total work involved for each of the methods.
This work is designated in the number ofN-flops, where oneN-flop is the amount of work
required to perform one inner product.

In Table 1 we have compared the number of iterations and the number ofN-flops for
all methods. Good relaxation parameters for the preconditioners in the PCG method are
determined experimentally. The values chosen are 0.955 for the RILU preconditioner and
1.9 for the SSOR preconditioner. Note that the numberk∗ of iterations for the PCG methods,
as well as for the stationary ADI method, grows very fast as a function of the numberN
of variables. However, for the instationary ADI method, where we have used Wachspress
iteration parameters, the number of iterations is low and grows at a very low rate. As can
be seen, the work load counted inN-flops favors the instationary ADI method already

TABLE 1

The Number of Iterations (k∗) and the Number of Inner Product Equivalents (N-Flops) Needed

to Fulfill the Stopping Criterion ‖r k‖h≤ 10−3

PCG RILU PCG SSOR Stat. ADI Instat. ADI

N k∗ N-flops k∗ N-flops k∗ N-flops k∗ N-flops

100 16 384 20 480 57 2,127 10 536
400 36 864 37 888 183 6,537 13 659

1,600 93 2,232 77 1,848 * * 15 765
6,400 302 7,248 179 4,296 * * 18 888
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TABLE 2

The Error ‖f − zk∗‖h between the Analytic Solutionf and the Final Iterate zk∗

N PCG RILU PCG SSOR Stat. ADI Instat. ADI

100 2.7× 10−4 4.0× 10−4 5.0× 10−4 3.7× 10−4

400 1.3× 10−3 2.6× 10−3 7.4× 10−4 6.6× 10−4

1,600 1.1× 10−2 1.3× 10−2 * 5.1× 10−4

6,400 1.4× 10−1 9.6× 10−2 * 1.5× 10−3

at N = 400, i.e., for a 20× 20 grid. The “∗ ” in the column for the stationary ADI
method means that this method would need more than 400 iterations to reach the tolerance
‖r k‖h ≤ 10−3.

Table 2 shows the error‖ f − zk∗‖h between the analytic solutionf and the final iterate
zk∗ for the runs in Table 1. We observe that the error is essentially bounded for the insta-
tionary ADI method, while it increases for the PCG methods. Thus, even if‖r k‖h≤ 10−3

for all methods, the solutionzk∗ looses accuracy with decreasingh for the PCG meth-
ods, while the accuracy is independent ofh for the instationary ADI method. This prop-
erty of the instationary ADI method is confirmed in Table 3. The reason for the grow-
ing error in the PCG solution is that the preconditioned iteration matrixA=C P is “ill-
conditioned” due to the type of data used. Therefore, the error‖z∗ − zk∗‖h, z∗ = P−1b,
need not be small even if‖r k∗‖h=‖P(z∗ − zk∗)‖h is small. This effect is not observed for
the instationary ADI method.

In Table 3 we have shown the results of running the instationary ADI method on large
grids, using both the Peaceman–Rachford and the Wachspress parameters. The number of
iterations is low and essentially independent of the grid size for both parameter types. Also,
the accuracy in the solution remains bounded as the grid size increases. Concluding our
experiments, it is fair to say that these computational results are very good for a fourth-order
problem.

TABLE 3

Results of Running the Instationary ADI Method on Large Grids Using

the Two Types of Iteration Parameters

Peaceman–Rachford Wachspress

N m k∗ ‖ f − zk∗ ‖h N-flops k∗ ‖ f − zk∗ ‖h N-flops

10,000 9 36 8.1× 10−4 1,536 17 5.1× 10−4 871
40,000 10 40 1.7× 10−3 1,694 21 1.1× 10−3 1,029
90,000 11 44 1.5× 10−3 1,852 20 1.5× 10−3 1,012

160,000 12 46 9.3× 10−3 1,940 22 9.6× 10−4 1,100
250,000 13 40 7.2× 10−3 1,748 23 3.0× 10−3 1,153

Note. The length of the cycles is denoted bym (number of iteration parameters in Algorithm 4.3). The number
of iterations needed to fulfill the stopping criterion‖r k‖h ≤ 10−3 is denoted byk∗, and the number of inner
product equivalents is denoted byN-flops. In addition the table shows the error‖ f − zk∗ ‖h between the analytic
solution f and the final iteratezk∗ .
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6. CONCLUDING REMARKS

This paper discusses the application of preconditioned conjugate gradient methods as
well as a stationary and an instationary ADI method to linear algebraic equations stemming
from a finite difference discretization of the fourth-order elliptic partial differential equation
uxxxx+uyyyy= b. This equation is solved as part of a scattered data approximation scheme,
where it is used as a smoothing technique to fill in unknown values in a partially determined
grid. The particular form, not involving mixed derivatives, is used to make it easy to handle
discontinuity conditions connected to the scattered data problem.

The results illustrate that, for the problem considered here, the instationary ADI method
is superior to the other methods, both with respect to the work involved and with respect
to accuracy of the solution. For the instationary ADI method the number of iterations is
essentially independent of the grid size, a property not shared by the other solvers where
the number of iterations grows very fast as a function of the grid size. One needs to perform
more numerical experiments to confirm this for a wider class of model problems.

We remark that the use of the ADI methods is suggested by the fact that the stencil (9)
does not contain mixed derivatives. If such terms are included to enforce smoothness of the
surface also in other than the coordinate directions, the grid points could not be ordered any
more in such a way that the matricesH andV are banded without many zeroes in between.
One alternative to compute the Cholesky decomposition ofH or V would then be to use
an iterative method like the conjugate gradient method instead for the updates ofz within
an ADI method. Another approach would be to splitP into several components, e.g. by
introducing ordering also along diagonals in the grid. Or, one could use one iteration of the
ADI method with P given by (9) as a preconditioner for the PCG method applied to the
operator with mixed derivatives.

In general, it is fair to say that the fast solution of large fourth-order problems is not an
easy question. To avoid the requirement on the high regularity of the solution when dis-
cretizing the problem (6) with a difference method, one usually rather employs a variational
approach. Thus, an alternative would be to use finite elements in a Galerkin method for
(4) combined with some approach to incorporate the known grid function values into the
problem formulation. Because of the dramatic effect of the condition number for fourth
order problems, a multilevel (see [9]) or multigrid preconditioner (see, e.g., [12]) which
exists for these types of variational problems yielding aO(1) growth-rate in a PCG method
is worth considering. The given data could be handled by appending them as side conditions
by Lagrange multipliers as in [15] or by using a least-squares approach like in [7]. However,
in addition to the fact that these approaches are typically realized for second order problems
only, the construction of several grids of different grid spacingh with a consistent treatment
of the given data which a multilevel method could be based upon is not that straightforward.
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